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Abstract. We present a generalised test theory of special relativity, using a non-inertial 
frame. Within the framework of the special theory of relativity the transport and Einstein 
synchronisations are equivalent on a rigidly rotating disc. But in any theory with a preferred 
frame, such an equivalence does not hold. The time difference resulting from the two 
synchronisation procedures is a measurable quantity within the reach of existing clock 
systems on the Earth. The final result contains a term which depends on the angular 
velocity of the rotating system, and hence measures an absolute effect. This term is of 
crucial importance in our test theory of special relativity. 

1. Introduction 

In the theory of relativity, one usually synchronises the clocks by the so-called Einstein 
procedure using light signals. An alternative procedure, which has also been widely 
discussed, is the synchronisation by ‘slow transport’ of clocks. The equivalence of the 
two procedures in inertial frames was first shown by Eddington (1963). In non-inertial 
frames the problem is more subtle and has recently been the subject of several articles, 
with conflicting results. Cohen et a1 (1983) have claimed that the two synchronisation 
methods are not equivalent, while Ashby and Allan (1984) have made a careful analysis 
of the problem and have established the equivalence of the two procedures. To realise 
the practical importance of this problem, one need only consider the degree of accuracy 
in time and frequency measurements obtained in the last two decades (10-9s) (see 
Ashby and Allan 1984, Allan 1988). 

In this paper we approach the problem in the framework of the test theory of 
special relativity suggested by Mansouri and Sex1 (1977) (see also Mansouri 1988). 
In this test theory, a class of rival theories is introduced against which the special 
theory of relativity is tested. The rival theories are all theories with a preferred frame 
of reference (‘ether’ or stationary frame) and for them the two methods of synchronisa- 
tion are not, in general, equivalent. The transformation from the ether frame to any 
other frame moving with a constant velocity (inertial frame) is a linear expression with 
a set of velocity-dependent coefficients and to its time component we can always add 
a synchronisation term by convention, which is an arbitrary function of space, time 
and velocity. Special relativity is recovered when these coefficients adopt a specific 
set of values. The time difference resulting from the two synchronisation procedures 
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provides us with a means, either theoretical or experimental, to set limits on the 
accuracy of the special theory of relativity. 

Here we try to extend the above scheme to non-inertial frames such as a rotating 
disc. In 0 2 we review the synchronisation procedures for accelerated observers in the 
special theory of relativity. It is well known that the transformation from a stationary 
frame to a rigid rotating frame causes the velocity of light to be locally different in 
opposite directions. One should redefine time, or rather ‘correct’ the local time interval 
of two adjacent events by an amount SE, so that the speed of light becomes the same 
in both directions. This corrected, or ‘natural time’, interval (Tonnelat 1966) guarantees 
the clocks on the rotating disc to be Einstein-synchronised. Since the classical Sagnac 
effect is related to this ‘correction’, we may call this redefinition of time interval the 
‘local Sagnac effect’. On the other hand, the synchronisation by slow clock transport 
on the rotating disc requires another correction in local time interval (‘local transport 
Sagnac effect’) to arrive at the ‘proper time’ of the transported clock. Therefore, several 
time intervals are involved in the problem, which require some elucidation if the 
equivalence of the two synchronisation procedures is to be investigated. In practice, 
to establish a network of synchronised clocks on, or in orbit around, the rotating Earth 
one needs a clear picture of the situation involved. We believe that the lack of 
differentiation between these time intervals has been the source of contradictory 
statements in the literature. In § 3 we consider a rotating system in our ether frame 
and evaluate the above-mentioned corrections using a particular one-parameter test 
theory and show that the difference of the corrections is of first order in SZ, the angular 
velocity of the rotating system. A more general situation discussed in § 3 is when the 
axis of the rotating system itself is moving with a constant velocity in the ether frame. 
The application to experiments done on the Earth and the upper limit obtained for 
the parameter of the theory is discussed in 0 4. 

2. Synchronisation on the rotating disc 

Consider a disc rotating with angular velocity R relative to the stationary frame So. 
The clocks in So are all Einstein-synchronised and we have for the metric 

ds2 = d t i  - dx: (2.1) 
where to and xo are the temporal and spatial coordinates in So. At any moment t ,  we 
can attribute a Lorentz frame S, to a point x on the rigid rotating disc, moving with 
velocity w of that point in the stationary frame So. The Lorentz transformation between 
So and S, is given by 

to = ( t  + W ’  x )  y 

In the frame S,, at the moment t ,  we have w - x = 0. Then 

to  = y t  

xo = x + ywt. (2.3) 

This transformation actually relates the stationary frame to an infinity of inertial 
frames instantaneously at rest on the disc at 1x1 = r = constant. The condition w x = 0 
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relates the systems S, to each other and brings us to the rigidly rotating disc. The 
clocks on the disc showing time t (local time) are externally and absolutely syn- 
chronised. Under (2.3) the spacetime separation of two events ( t o ,  xo) and ( t o  + dt,, xo + 
dx,) is given by 

= grv dx’” dx”  (2.4) 
where cp is the polar angle on the disc. 

It is obvious that the Einstein-synchronisation of the So frame is not preserved on 
the disc. In order to obtain the same velocity of light in both directions one should 
‘correct’ the time interval d t  by an amount (Landau and Lifshitz 1975) 

- -& dx“ 
E -  

goo 

Then 

where tE is the Einstein-synchronised time on the disc. Integrating over a closed circle 
of radius 1x1 = r, the correction would amount to 

where the signs * depend on the direction the circuit is traversed. Two light rays 
leaving a point A on the disc in opposite directions and traversing the same circular 
(or polygonal) path would have a phase difference on arriving at A which corresponds 
to the time difference 2AE. This is the well known Sagnac effect (Post 1967). 

Now consider a clock moving slowly on a circular path of radius r on the disc. 
The proper time interval d r  shown on the transported clock is given by 

d q  is the angle travelled by the clock on the disc in local time dt. By slow clock 
transport we mean 

r dcp/dt<c 1 .  (2.9) 

dT=dt-ST (2.10) 

Keeping only the first-order term in dpld t ,  (2.8) leads to 

where 

(2.11) 

Equations (2.5) and (2.11) show that local time interval should be ‘corrected’ by the 
same amount, no matter which synchronisation procedure is adopted. This proves the 
local equivalence of the two methods of synchronisation. 
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In general, di, and d7 are inexact differentials, i.e. their integrals are path dependent. 
Therefore, in order to have synchronised clocks at two arbitrary points on the disc, 
the light ray and transported clock should follow the same path between the points. 

Now we consider the differential form of (2.3) and write it in the following form: 

dto = r- d t  

dro = dr JxoI = 1x1 = r (2.12) 

dq  = d q  +TR dt  

where T is now an undetermined factor depending on w = Rr. Equation (2.12) still 
converts the line elements ds2 = d t i  - dxi into the following form for the rotating frame: 

(2.13) 

To have Einstein-synchronisation of the adjacent clocks on the disc (which are not 

ds2 = r2( 1 - r2R2) dt2  - 2r2TR d p  d t  - r2 dq2.  

in the same inertial frames), one should correct the time interval d t  such that 

r2R 
T ( 1 - r  R ) dt, = dt - 2 2 dv. (2.14) 

One can show that the proper time of the moving clock on the disc ( r  = constant) is 
equal to dt, if and only if 

r = ( 1  - r2R2)-1’2 = Y 

i.e. the rates of clocks on the disc obey the Lorentz dilation. 
If T # y, then the two synchronisation methods are not equivalent. Therefore (2.12) 

with T undetermined provides us with a one-parameter test theory of special relativity. 
In the following section we consider a slightly different rival theory for special relativity 
which is more appropriate for our purpose. 

3. Formulation of the test theory on a rotating disc 

Let So again be a preferred stationary frame with coordinates ( t o ,  xo). The most general 
transformation from So to a frame S, moving with velocity w is given by (Mansouri 
and Sex1 1977) 

1 E ’ X  t ---- 
a a  0- 

a 
x 1  b - d  1 

x , = - + - w t -  
d a  

(3.1) 

where a, b and d are parameters that may depend only on w 2  and E is a w-dependent 
vector parameter specifying the synchronisation procedure. For the Lorentz transfor- 
mation, i.e. no preferred frame and Einstein-synchronisation, we have 

a = y - ’ ( w )  b = Y ( W )  d = l  E =--W. 
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To have Einstein-synchronisation in the S, frame one should have (Mansouri and Sex1 
1977) 

a(w) w 
b ( w )  1 -w2 '  

E = - - -  (3 .2)  

In order to obtain the transformation for the disc we should impose the condition 
x - w = 0. Then, assuming (3.2),  

to = t/a 

xo = x/ d + ( 1 / a ) wt. 

For differentials 

d t o = ( l / a )  d t  

dxo = ( l / d )  dx+  ( l /a)w dt  

(3.3) 

(3 .4)  

and 

ldxol = r d@ Idxi= r d q  w = r n .  

The adjacent observers on the disc with 1x1 =constant do not belong to the same 
inertial frame. Therefore, as it stands, their clocks are not Einstein-synchronised with 
each other: 

dti -dxi=(1/a)2dt2-[ (1 /d)  dx+( l / a )w  dtI2. (3.5) 

To achieve such a synchronisation on the disc, we define a new time interval dt,: 

W 
d tE=d t - ( a /d ) -  r dp. 

1-w2 (3 .6)  

Then 

dtg-dxi=[( l  - ~ ' ) / a ~ ] d t ~ - ( l / d ) ~ [ l / ( l - w ~ ) ] r ~ d q ~ .  (3.7) 

Equation (3.7) can be written as 

d s 2 = d t ~ - d x ~ = f 2 ( w ) ( d t ~ -  K 2 r 2  dp2)  (3 .8)  

where 

(3 .9)  

and f ( w )  and K(w)  are functions of w2 only. 
One should note that, in contrast to the special theory of relativity, s no longer 

represents the proper time of clocks located on the disc. This time is already represented 
by f E ,  which differs from s as long as f ( w )  # 1 .  Here with the metric given by (3 .8)  
we have the preferred frame corresponding to w = 0. No coordinate transformation 
can reduce f( w) to unity when w # 0. One can, of course, rescale the rates of clocks 
and the standard of length in S,  by the same velocity-dependent factor f( w )  to achieve 
the equivalence of Einstein and transport synchronisations. However, bringing these 
rescaled clocks and standards of length back to the ether frame So, the equivalence 
of Einstein and transport synchronisations would break down. 
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Now we try to find the difference of the corrections, laE - aT(. To each point on 
the disc ( r  = constant) we attach a frame S, moving with speed w. We assume that all 
the clocks on the ring r = constant are Einstein-synchronised. Now, consider a clock 
moving on this same ring with speed w‘ relative to So.  Then by (3.8) we have 

(3.10) 

where r is the time measured by the moving clock (proper time of the clock) and w’ 
is the speed of the moving clock relative to the stationary system So.  From (3.8) and 
(3.10) we obtain 

d t i  - dx; = f 2 (  w’) dT2 

(3.11) 

where U = r(dcp/dt,) is the speed of the moving clock relative to the disc. For small 
U values (A3) 

and then 

(3.12) 

(3.13) 

Now we expand f up to first order in w2: 

Then at any point on the disc, the proper time of the clock transported a finite angle 
Acp would differ from the time shown by the Einstein-synchronised clocks, up to linear 
terms in the velocity by an amount (Abolghasem et al 1988) 

I A ~ E - A T ~ = ( ~ L Y + ~ ) W  AV. (3.14) 
When no inertial frame is preferred (special relativity) a = - $  andf( w)  = 1, i.e. At, = Ar.  
This proves the equivalence of the two synchronisation methods on a rotating disc in 
the framework of special relativity. 

In the above derivation we made the simplifying assumption that the axis of rotation 
is at rest in the ether frame. This assumption, while quite helpful for the introduction 
of different ‘times’ and ‘time corrections’, is not applicable to systems such as the 
moving Earth. We may consider the local frame of cosmic background radiation as 
the stationary ether frame, relative to which the Earth is moving with a speed of 
300 km s-’. Therefore, a hierarchy of four coordinate systems are to be taken into 
account: a preferred ‘ether’ frame H, a non-rotating frame So moving in I;, a rigidly 
rotating system S, spinning with angular velocity in So,  and finally a clock moving 
slowly in S, at a fixed distance from the axis of rotation. Our parametrised rival 
theories provide us with a set of transformations relating each of the above reference 
systems to X. One should find the relative velocity of S, and S o ,  impose the condition 
of rigid rotation and calculate the ‘Sagnac type’ and ‘transport Sagnac type’ time 
corrections, just as we did before. The details of these calculations can be found in 
the appendix. The final result (A14) is very similar to (3.14): 

(3.15) 
or using (A4) 

f ( w )  = 1 -$(2a + 1)w2. 

A tE - A t~ = ( 1 + 2a  ) Vr Acp 

(3.16) 
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where V is the speed of S,  relative to Z and A V  is the angular displacement of the 
transported clock on the disc. w is the relative velocity of S, and So as before. When 
U = 0, (3.15) is reduced to (3.14) by way of (A3). It should be noted that (3.14) is not 
recovered when U is set equal to zero in (3.16). For w = 0 it can easily be seen that 
the previously obtained result of Mansouri and Sex1 (1977) is regained. 

4. Conclusion 

Equivalence of the two synchronisation methods in the special theory of relativity 
implies that a = -4 .  Therefore (3.16) provides us with a means for testing this theory 
against a class of rival theories defined by a parameter a. Before discussing the 
implications for the experimental results we should note an important point. The 
right-hand side of (3.16) consists of two terms which are fundamentally different in 
nature. The first term, linear in v, is in a sense a relative quantity, depending on which 
frame is taken as preferred. The second term, related to the Sagnac effect, depends 
on the angular velocity of the rotating system. Hence it measures an absolute effect, 
independent of the choice of the ether frame. This makes the second term of crucial 
importance in our test theory, even though numerically it may be much smaller than 
the first term. 

All of the so-called first-order experiments of the special theory of relativity are 
related to the results obtained above. In these experiments the one-way speed of light 
is measured using distant transport-synchronised clocks. We divide these experiments 
into two groups. 

(i) Laboratory experiments where the quantity r A p  in (3.16) is of the order of lm. 
This group includes the older rotor tests (Champaney et a1 1963, Isaak 1970), as well 
as the recent work of Riis et a1 (1988) in which the isotropy of the speed of light is 
tested. For these experiments the second term of (3.16) is negligibly small compared 
to the first term (10-’5/10-8). The experimental equality of A t ,  and AtT within the 
limits of accuracy of existing atomic clocks (a few nanoseconds, Asby and Allan (1984)) 
results in a = -;* if we consider the local frame of microwave background 
radiation as our ether frame. 

(ii) The second group of experiments are large-scale tests such as the around-the- 
world clock-transport experiments where rAcp is of order of 10”. Here the second 
term of (3.16) is no longer negligible. The data from GPS satellites with their much 
larger r(-20-25 x lo3 km) may bring this term well within the range of accuracy of 
existing atomic clocks (Allan 1988). Considering the absolute nature of the second 
term in (3.16), it is desirable to arrange an experimental set-up in which the first term 
is somehow eliminated. Vanishing of the second term along a certain meridian is 
helpful in this respect. One possible arrangement is a null first-order experiment 
performed on Earth using a clock first transported along the meridian and then along 
some other direction, preferably parallel to the equator. 
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Appendix 

Let us denote the ‘ether’ frame by Z( T, X ) .  Consider a frame So( t o ,  xo) moving with 
velocity U relative to Z. If the clocks in So are Einstein-synchronised 

a ( v )  0 

b ( ~ )  1 - V’ 

the general transformations (3.1) can be written as 

E = - - -  

b( 1 -U’) - 1 
a bv2( 1 - v 2 )  

X=xo+-uoto-  

1 
U x, t0  

a b ( 1 - v Z )  
T=-+ 

and their inverse as 

U 
to = 7 ( T - U * X) 

1 - v  

where we have set d equal to unity, as it does not affect the results. For any other 
system S,(t, x) moving with velocity V in Z, a and b are functions of V.  The velocity 
w of Sx relative to So is simply obtained using ( A l )  and (Al’) as 

U - bo + [ ( b - 1 )/ v ’1 ( U * V )  U 
[ a / ( l -  u 2 ) ] ( 1  -0‘ V )  

where (z and b are functions of v. Equation (A2) is nothing but our formula for the 
addition of velocities. For small values of w( w 2  = 0), we have 

and also 

a ( u )  U -  w d a ( v )  
a( V )  = a (  U )  +- - - 

b ( v )  v dv 

a ( v )  U -  w d b ( v )  
b ( u )  v du 

b( V ) =  b ( v ) + -  - -. 

Now let So be the frame attached to the axis of rotation of the disc (or non-rotating 
Earth) and S,  be the frame of the rigidly rotating disc (or the Earth). The transforma- 
tions (AI) and (Al’) for S, is only momentarily defined and should be subject to the 
condition of rigid rotation: 

dlxJ = 0 w . x = o .  (A61 
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In order to calculate the quantity dT2-dX2,  in terms of coordinates ( t ,  x), we 
make a further approximation and keep the terms only up to second order in U :  

a (  u )  L- 1 + au2 

b( U )  = 1 + @U2. 
Using (A7) and imposing (A6), we obtain 

d T 2 - d X 2 =  f’( V) d t2- [ l  -(2@ - l )u i2(@ - 1)uw sin q] r2  dq2-2wr d(o d t  (AS) 

wheref2( V) = [ 1 - (1 + 2 a )  V’] and (o is the polar angle on the disc. U, is the projection 
of v on w. Now 

dfE=df-Wrd(o/f*( v) (A91 

d T 2 - d X 2 =  f ’ ( V ) ( d t t - K 2 r 2 d q 2 )  (‘410) 

diagonalises the RHS of (AS): 

where K is a certain function of U, w and q. Now let us denote by S: the rest frame 
of a clock moving at r = constant on the rotating disc. Then 

dT2-dX2=f’(V‘) d t q  ( A l l )  

where V’ is the velocity of Sk relative to Z and t i  is the proper time of the clock (i.e. 
the time shown on the moving clock). One then easily obtains 

where U = r dq/dt ,  is the speed with which the clock moves on the rotating disc S,.  
Using the expansion 

f (  V ) =  1 -4(l + 2 a ) V 2  (A131 

one finds from (A12) that, for a clock transported by a finite angle A q ,  

References 

Abolghasem G H, Khajehpour M R H and Mansouri R 1988 Phys. Lett A 132 310 
Allan D W 1988 private communication 
Ashby N and Allan D W 1984 Phys. Rev. Lett. 53 1858 
Champaney D C, Isaak G R and Kahn A M 1963 Phys. Lett. 7 241 
Cohen J M, Moses H E and Rosenblum A 1983 Phys. Rev. Lett. 51 1501 
Eddington A 1963 The Mathematical Theory of Relativity (Cambridge: Cambridge University Press) p 15 
Issak G R 1970 Phys. Bull. 21 255 
Landau L D and Lifshitz E M 1975 The Classical Theory of Fields (Oxford: Pergamon) 4th edn 
Mansouri R 1988 Internal Report, ICTP, Trieste IC/88/55 
Mansouri R and Sex1 R 1977 Gen. Rel. Grav. 8 497, 515, 809 
Post E J 1967 Rev. Mod. Phys. 39 475 
Riis E, Anderson L, Bjerre N, Poulsen 0, Lee S A and Hall J L 1988 Phys. Rev. Lett. 60 81 
Tonnelat M A 1966 Principles of Electromagnetism and Relativity (New York: Gordon and Breach) 


